datasheetbank_Logo
Технический паспорт Поисковая и бесплатно техническое описание Скачать

LTC3778 Просмотр технического описания (PDF) - Linear Technology

Номер в каталоге
Компоненты Описание
Список матч
LTC3778 Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LTC3778
APPLICATIO S I FOR ATIO
The ρT term is a normalization factor (unity at 25°C)
accounting for the significant variation in on-resistance
with temperature, typically about 0.4%/°C as shown in
Figure 2. For a maximum junction temperature of 100°C,
using a value ρT = 1.3 is reasonable.
2.0
1.5
1.0
Operating Frequency
The choice of operating frequency is a tradeoff between
efficiency and component size. Low frequency operation
improves efficiency by reducing MOSFET switching losses
but requires larger inductance and/or capacitance in order
to maintain low output ripple voltage.
The operating frequency of LTC3778 applications is deter-
mined implicitly by the one-shot timer that controls the
on-time tON of the top MOSFET switch. The on-time is set
by the current into the ION pin and the voltage at the VON
pin according to:
0.5
0
– 50
0
50
100
150
JUNCTION TEMPERATURE (°C)
3778 F02
Figure 2. RDS(ON) vs. Temperature
The power dissipated by the top and bottom MOSFETs
strongly depends upon their respective duty cycles and
the load current. When the LTC3778 is operating in
continuous mode, the duty cycles for the MOSFETs are:
DTOP
=
VOUT
VIN
DBOT
=
VIN
– VOUT
VIN
The resulting power dissipation in the MOSFETs at maxi-
mum output current are:
PTOP = DTOP IOUT(MAX)2 ρT(TOP) RDS(ON)(MAX)
+ k VIN2 IOUT(MAX) CRSS f
PBOT = DBOT IOUT(MAX)2 ρT(BOT) RDS(ON)(MAX)
Both MOSFETs have I2R losses and the top MOSFET
includes an additional term for transition losses, which are
largest at high input voltages. The constant k = 1.7A–1 can
be used to estimate the amount of transition loss. The
bottom MOSFET losses are greatest when the bottom duty
cycle is near 100%, during a short-circuit or at high input
voltage.
tON
=
VVON
IION
(10pF)
Tying a resistor RON from VIN to the ION pin yields an on-
time inversely proportional to VIN. For a step-down con-
verter, this results in approximately constant frequency
operation as the input supply varies:
f=
VOUT
[Hz]
(VVON) RON(10pF)
To hold frequency constant during output voltage changes,
tie the VON pin to VOUT. The VON pin has internal clamps
that limit its input to the one-shot timer. If the pin is tied
below 0.7V, the input to the one-shot is clamped at 0.7V.
Similarly, if the pin is tied above 2.4V, the input is clamped
at 2.4V. If output is above 2.4V, use a resistive divider from
VOUT to VON pin.
Because the voltage at the ION pin is about 0.7V, the
current into this pin is not exactly inversely proportional to
VIN, especially in applications with lower input voltages.
To correct for this error, an additional resistor RON2
connected from the ION pin to the 5V INTVCC supply will
further stabilize the frequency.
RON2
=
5V
0.7V
RON
Changes in the load current magnitude will also cause
frequency shift. Parasitic resistance in the MOSFET
switches and inductor reduce the effective voltage across
the inductance, resulting in increased duty cycle as the
3778f
11

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]