datasheetbank_Logo
Технический паспорт Поисковая и бесплатно техническое описание Скачать

IDT723676L15PF Просмотр технического описания (PDF) - Integrated Device Technology

Номер в каталоге
Компоненты Описание
Список матч
IDT723676L15PF Datasheet PDF : 39 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
IDT723656/723666/723676 CMOS TRIPLE BUS SyncFIFOTM WITH
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2
COMMERCIAL TEMPERATURE RANGE
SIGNAL DESCRIPTION
MASTER RESET ( MRS1, MRS2 )
After power up, a Master Reset operation must be performed by providing
a LOW pulse to MRS1 and MRS2 simultaneously. Afterwards, the FIFO1
memory of the IDT723656/723666/723676 undergoes a complete reset by
taking its associated Master Reset (MRS1) input LOW for at least four Port A Clock
(CLKA) and four Port B Clock (CLKB) LOW-to-HIGH transitions. The FIFO2
memory undergoes a complete reset by taking its associated Master Reset
(MRS2) input LOW for at least four Port A Clock (CLKA) and four Port C Clock
(CLKC) LOW-to-HIGH transitions. The Master Reset inputs can switch
asynchronously to the clocks. A Master Reset initializes the associated read and
write pointers to the first location of the memory and forces the Full/Input Ready
flag (FFA/IRA, FFC/IRC) LOW, the Empty/Output Ready flag (EFA/ORA, EFB/
ORB) LOW, the Almost-Empty flag (AEA, AEB) LOW and the Almost-Full flag
(AFA, AFC) HIGH. A Master Reset also forces the associated Mailbox Flag
(MBF1, MBF2) of the parallel mailbox register HIGH. After a Master Reset, the
FIFO's Full/Input Ready flag is set HIGH after two Write Clock cycles. Then the
FIFO is ready to be written to.
A LOW-to-HIGH transition on the FIFO1 Master Reset (MRS1) input latches
the value of the Big-Endian (BE) input for determining the order by which bytes
are transferred through Ports B and C. It also latches the values of the Flag Select
(FS0, FS1 and FS2) inputs for choosing the Almost-Full and Almost-Empty
offsets and programming method.
A LOW-to-HIGH transition on the FIFO2 Master Reset (MRS2) clears the flag
offset registers of FIFO2 (X2, Y2). A LOW-to-HIGH transition on the FIFO2
Master Reset (MRS2) together with the FIFO1 Master Reset input (MRS1)
latches the value of the Big-Endian (BE) input for Ports B and C and also latches
the values of the Flag Select (FS0, FS1 and FS2) inputs for choosing the Almost-
Full and Almost-Empty offsets and programming method (for details see Table
1, Flag Programming, and Almost-Empty and Almost-Full flag offset program-
ming section). The relevant Master Reset timing diagrams can be found in
Figure 4 and 5.
Note that MBC must be HIGH during Master Reset (until FFA/IRA and
FFC/IRC go HIGH). MBA and MBB are "don't care" inputs1 during Master
Reset.
PARTIAL RESET (PRS1, PRS2)
The FIFO1 memory of these devices undergoes a limited reset by taking its
associated Partial Reset (PRS1) input LOW for at least four Port A Clock (CLKA)
and four Port B Clock (CLKB) LOW-to-HIGH transitions. The FIFO2 memory
undergoes a limited reset by taking its associated Partial Reset (PRS2) input
LOW for at least four Port A Clock (CLKA) and four Port C Clock (CLKC) LOW-
to-HIGH transitions. The RTM pin must be LOW during the time of partial reset.
The Partial Reset inputs can switch asynchronously to the clocks. A Partial Reset
initializes the internal read and write pointers and forces the Full/Input Ready
flag (FFA/IRA, FFC/IRC) LOW, the Empty/Output Ready flag (EFA/ORA, EFB/
ORB) LOW, the Almost-Empty flag (AEA, AEB) LOW, and the Almost-Full flag
(AFA, AFC) HIGH. A Partial Reset also forces the Mailbox Flag (MBF1, MBF2)
of the parallel mailbox register HIGH. After a Partial Reset, the FIFO’s Full/Input
Ready flag is set HIGH after two Write Clock cycles.
Whatever flag offsets, programming method (parallel or serial), and timing
mode (FWFT or IDT Standard mode) are currently selected at the time a Partial
Reset is initiated, those settings will remain unchanged upon completion of the
reset operation. A Partial Reset may be useful in the case where reprogramming
a FIFO following a Master Reset would be inconvenient. See Figure 6 and 7
for Partial Reset timing diagrams.
RETRANSMIT ( RT1, RT2 )
The FIFO1 memory of these devices undergoes a Retransmit by taking its
associated Retransmit (RT1) input LOW for at least four Port A Clock (CLKA)
and four Port B Clock (CLKB) LOW-to-HIGH transitions. The Retransmit
initializes the read pointer of FIFO1 to the first memory location.
The FIFO2 memory undergoes a Retransmit by taking its associated
Retransmit (RT2) input LOW for at least four Port A Clock (CLKA) and four Port
C Clock (CLKC) LOW-to-HIGH transitions. The Retransmit initializes the read
pointer of FIFO1 to the first memory location.
The RTM pin must be HIGH during the time of Retransmit. Note that the RT1
input is muxed with the PRS1 input, the state of the RTM pin determining whether
this pin performs a Retransmit or Partial Reset. Also, the RT2 input is muxed
with the PRS2 input, the state of the RTM pin determining whether this pin
performs a Retransmit or Partial Reset. See Figures 30, 31, 32 and 33 for
Retransmit timing diagrams.
BIG-ENDIAN/FIRST WORD FALL THROUGH ( BE/FWFT )
— ENDIAN SELECTION
This is a dual purpose pin. At the time of Master Reset, the BE select function
is active, permitting a choice of Big- or Little-Endian byte arrangement for data
written to Port C or read from Port B. This selection determines the order by
which bytes (or words) of data are transferred through those ports. For the
following illustrations, note that both ports B and C are configured to have a byte
(or a word) bus size.
A HIGH on the BE/FWFT input when the Master Reset (MRS1, MRS2) inputs
go from LOW to HIGH will select a Big-Endian arrangement. When data is
moving in the direction from Port A to Port B, the most significant byte (word) of
the long word written to Port A will be read from Port B first; the least significant
byte (word) of the long word written to Port A will be read from Port B last. When
data is moving in the direction from Port C to Port A, the byte (word) written to
Port C first will be read from Port A as the most significant byte (word) of the long
word; the byte (word) written to Port C last will be read from Port A as the least
significant byte (word) of the long word.
A LOW on the BE/FWFT input when the Master Reset (MRS1, MRS2) inputs
go from LOW to HIGH will select a Little-Endian arrangement. When data is
moving in the direction from Port A to Port B, the least significant byte (word) of
the long word written to Port A will be read from Port B first; the most significant
byte (word) of the long word written to Port A will be read from Port B last. When
data is moving in the direction from Port C to Port A, the byte (word) written to
Port C first will be read from Port A as the least significant byte (word) of the long
word; the byte (word) written to Port C last will be read from Port A as the most
significant byte (word) of the long word. Refer to Figure 2 and 3 for illustrations
of the BE function. See Figure 4 (FIFO1 Master Reset) and 5 (FIFO2 Master
Reset) for Endian Select timing diagrams.
— TIMING MODE SELECTION
After Master Reset, the FWFT select function is available, permitting a choice
between two possible timing modes: IDT Standard mode or First Word Fall
Through (FWFT) mode. Once the Master Reset (MRS1, MRS2) input is HIGH,
a HIGH on the BE/FWFT input during the next LOW-to-HIGH transition of CLKA
(for FIFO1) and CLKC (for FIFO2) will select IDT Standard mode. This mode
uses the Empty Flag function (EFA, EFB) to indicate whether or not there are
any words present in the FIFO memory. It uses the Full Flag function (FFA,
FFC) to indicate whether or not the FIFO memory has any free space for writing.
In IDT Standard mode, every word read from the FIFO, including the first, must
be requested using a formal read operation.
NOTE:
1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused
inputs) must not be left open, rather they must be either HIGH or LOW.
11

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]