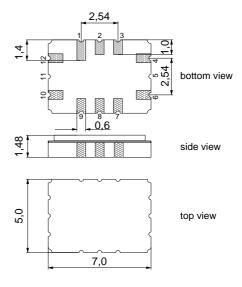


SAW Components

Data Sheet B3895

SAW Components B3895
Low-Loss Filter 204,0 MHz

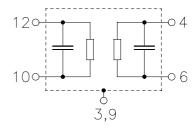
Data Sheet


Features

- Low-loss IF filter for S-CDMA applications
- 500 kHz usable bandwidth
- Temperature stable
- Ceramic SMD package

Terminals

■ Gold plated


Ceramic package QCC12C

Dimensions in mm, approx. weight 0,2 g

Pin configuration

12	Input
10	Input ground
6	Output
4	Output ground
1, 2, 7, 8	Ground
3 9	Case ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B3895	B39201-B3895-H310	C61157-A7-A95	F61074-V8170-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	-40 / +80	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	0	dBm

SAW Components B3895

Low-Loss Filter 204,0 MHz

Data Sheet

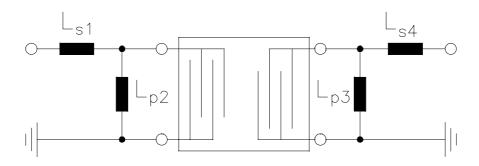
Characteristics

Operating temperature range: $T = 0 ... 70 \,^{\circ}C$

Terminating source impedance: $Z_{\rm S} = 50~\Omega$ and matching network Terminating load impedance: $Z_{\rm L} = 50~\Omega$ and matching network

		min.	typ.	max.	
Nominal frequency	f_{N}	_	204,0	_	MHz
Minimum insertion attenuation	α_{min}	_	9,0	10,0	dB
Pass bandwidth					
$\alpha_{rel} \leq 1.0 \text{ dB}$	B_{1dB}	<u> </u>	700	_	kHz
$\alpha_{rel} \le 3.0 \text{ dB}$	B_{3dB}		1150	_	kHz
Amplitude ripple (p-p)	$\Delta \alpha$				
$f_{N} \pm 250 \; kHz$		_	0,5	1,0	dB
Absolute group delay	τ				
@ f _N			0,8	_	μs
Group delay ripple (p-p)	Δau				
$f_{N} \pm 250 \; kHz$		_	30	100	ns
Relative attenuation (relative to α_{min})	α_{rel}				
f _N – 10,0 MHz f _N – 2,0 MHz		45	48	_	dB
$f_N + 2,0 \text{ MHz} \dots f_N + 3,5 \text{ MHz}$		45	50	_	dB
$f_N + 3.5 \text{ MHz} \dots f_N + 4.5 \text{ MHz}$		44	46	_	dB
$f_N + 4,5 \text{ MHz} \dots f_N + 10,0 \text{ MHz}$		45	48	_	dB
Temperature coefficient of frequency 1)	TC _f	<u> </u>	-0,036		ppm/K ²
Turnover temperature	T_0		35	_	°C

 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A}) = f_{\rm c}(T_0)(1 + TC_{\rm f}(T_{\rm A} - T_0)^2)$



SAW Components B3895

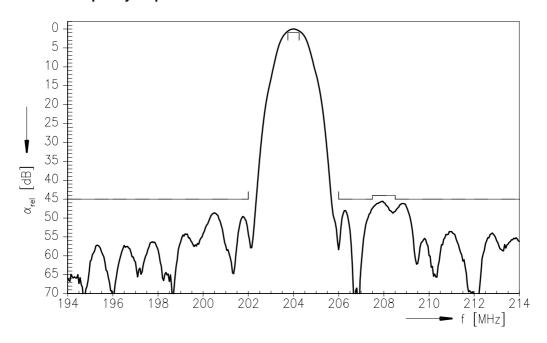
Low-Loss Filter 204,0 MHz

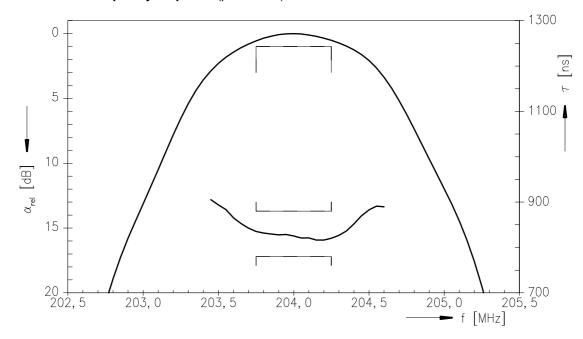
Data Sheet

Matching network to 50 Ω (Element values depend on PCB layout)

 $L_{s1} = 150 \text{ nH}$

 $L_{p2} = 120 \text{ nH}$ $L_{p3} = 150 \text{ nH}$


 $L_{s4} = 100 \text{ nH}$


SAW Components B3895
Low-Loss Filter 204,0 MHz

Data Sheet

Normalized frequency response

Normalized frequency response (pass band)

SAW Components B3895

Low-Loss Filter 204,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2003. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.